3.90 \(\int \csc ^2(e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=105 \[ \frac{3 b \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 f}+\frac{3 \sqrt{b} (a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 f}-\frac{\cot (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f} \]

[Out]

(3*Sqrt[b]*(a + b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*f) + (3*b*Tan[e + f*x]*S
qrt[a + b + b*Tan[e + f*x]^2])/(2*f) - (Cot[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2))/f

________________________________________________________________________________________

Rubi [A]  time = 0.104994, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4132, 277, 195, 217, 206} \[ \frac{3 b \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 f}+\frac{3 \sqrt{b} (a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 f}-\frac{\cot (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

(3*Sqrt[b]*(a + b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*f) + (3*b*Tan[e + f*x]*S
qrt[a + b + b*Tan[e + f*x]^2])/(2*f) - (Cot[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2))/f

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b+b x^2\right )^{3/2}}{x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cot (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{f}+\frac{(3 b) \operatorname{Subst}\left (\int \sqrt{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{3 b \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}-\frac{\cot (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{f}+\frac{(3 b (a+b)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac{3 b \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}-\frac{\cot (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{f}+\frac{(3 b (a+b)) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 f}\\ &=\frac{3 \sqrt{b} (a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac{3 b \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}-\frac{\cot (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{f}\\ \end{align*}

Mathematica [C]  time = 0.221493, size = 64, normalized size = 0.61 \[ -\frac{(a+b) \cot (e+f x) \sqrt{a+b \sec ^2(e+f x)} \text{Hypergeometric2F1}\left (-\frac{1}{2},2,\frac{1}{2},\frac{b \sin ^2(e+f x)}{-a \sin ^2(e+f x)+a+b}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

-(((a + b)*Cot[e + f*x]*Hypergeometric2F1[-1/2, 2, 1/2, (b*Sin[e + f*x]^2)/(a + b - a*Sin[e + f*x]^2)]*Sqrt[a
+ b*Sec[e + f*x]^2])/f)

________________________________________________________________________________________

Maple [C]  time = 0.345, size = 2032, normalized size = 19.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x)

[Out]

-1/2/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(3/2)*cos(f*x+e)*(6*sin(f*x+e
)*cos(f*x+e)^3*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))
)^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*Ellipt
icPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2
*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a*b+6*sin(f*x+e)*cos(f*x+e)^3*2^
(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)
*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+
e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2
)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^2-3*sin(f*x+e)*cos(f*x+e)^3*2^(1/2)*(1/(a+b)*(I
*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^
(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*
b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))
*a*b-3*sin(f*x+e)*cos(f*x+e)^3*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b
)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e
)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-
4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^2+6*sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e
)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1
/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a
-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a
^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a*b+6*sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)
-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(
1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/
sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-
b)/(a+b))^(1/2))*b^2-3*sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2
)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)
-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*
a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a*b-3*sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a
+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x
+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^
(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^
(1/2))*b^2+2*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2+3*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b
)/(a+b))^(1/2)*a*b+cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+3*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/
2)+a-b)/(a+b))^(1/2)*b^2-((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2)/sin(f*x+e)/(b+a*cos(f*x+e)^2)^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.30849, size = 932, normalized size = 8.88 \begin{align*} \left [\frac{3 \,{\left (a + b\right )} \sqrt{b} \cos \left (f x + e\right ) \log \left (\frac{{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \,{\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \,{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt{b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) \sin \left (f x + e\right ) - 4 \,{\left ({\left (2 \, a + 3 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{8 \, f \cos \left (f x + e\right ) \sin \left (f x + e\right )}, \frac{3 \,{\left (a + b\right )} \sqrt{-b} \arctan \left (-\frac{{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt{-b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \,{\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \,{\left ({\left (2 \, a + 3 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, f \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/8*(3*(a + b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 +
4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)
 + 8*b^2)/cos(f*x + e)^4)*sin(f*x + e) - 4*((2*a + 3*b)*cos(f*x + e)^2 - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*
x + e)^2))/(f*cos(f*x + e)*sin(f*x + e)), 1/4*(3*(a + b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*co
s(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*co
s(f*x + e)*sin(f*x + e) - 2*((2*a + 3*b)*cos(f*x + e)^2 - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(f*c
os(f*x + e)*sin(f*x + e))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**2*(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \csc \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*csc(f*x + e)^2, x)